
1

Modelling and control of an Autonomous Bicycle
Venkatraman Nagaraj∗, Klas Lundgren†, Axel Davíð Ingólfsson‡ and Lucas Jansson§

All authors are master students at Systems, Control and Mechatronics,
Chalmers University of technology, Sweden

Email: ∗vennag@student.chalmers.se, †klaslu@student.chalmers.se, ‡inaxel@student.chalmers.se, §lucasj@student.chalmers.se

Abstract—The purpose of this project was to design a con-
troller for a bicycle in order to keep it stable and preferably follow
a set trajectory. A model of a bicycle was derived and linearized
and an adaptive LQR controller which gains vary with varying
velocity was designed to keep the bike stable. The model was
based on the well known Whipple model which is a simple model
that describes the dynamics of a bicycle. A powerful DC motor
was used to control the angular velocity of the handlebar. Due
to the high torque capacity of the motor, all dynamics affected
by the bicycle on the angular acceleration of the handlebar were
neglected and angular acceleration was used directly as an input.
The controller manages to keep the bike stable and the bike is
able to follow turns. However, no complete trajectory planning
was implemented.

Index Terms—Autonomous, bicycle, modelling, control, LQR

I. INTRODUCTION

Detecting and tracking bicyclists in traffic is one of the chal-
lenges engineers are faced with when developing algorithms
for collision avoidance in autonomous vehicles. Options to
safely test vehicle’s abilities to detect and act in response
to threats of accidents involving cyclists are limited. One
possible way to perform such tests in a safe environment is to
build autonomous bicycles and use them to simulate human
cyclists. This paper consists of an in depth description of the
mathematical model of the bike’s dynamics as well as how a
controller is implemented on an actual prototype.

In this paper a model and controller will be implemented to
the bicycle with steering of the handlebar as the only input to
the system, considering bike forward velocity a constant. The
goal is to have a self-stabilizing bicycle that uses steering in
order to avoid falling. The dynamics of a bicycle are rather
complex and therefore it is difficult to directly implement a
controller however, a simple model could still be used to give
an understanding of the dynamics, as described by Åström et
al. [1]

Modeling and control of a bicycle is a previously explored
field. Similar projects have been attempted by A. Sharma et
al. [2], Y. Tanaka and T. Murakami [3] as well as well as
by A.L. Schwab and N. Appleman [4]. Although the projects
are similar in that they regard bicycle dynamics and control,
the focuses are not the same for the three aforementioned.
However they serve as a basis for what results have been
produced previously and can therefore be comparative.

II. HARDWARE

The bicycle used for the project was a Skeppshult Cyk EL 7.
The bike is equipped with an electric DC motor attached to the
rear wheel which is designed to to provide torque assistance
to the cyclist while pedaling.

Fig. 1. The bicycle used for the project was a Skeppshult Cyk EL 7. The
bike in the picture has been equipped with a steering motor, sensors and other
electronics.

A. Velocity

The velocity of the bicycle is measured with a hall effect
sensor of type Honeywell 103SR13A-1. Five magnets were
positioned evenly around the rear wheel frame at known
distances and the elapsed time between passes of magnets is
measured to calculate the forward velocity of the bike.

Electric bicycles are designed to only activate the wheel
motor when a rider is pedaling to provide torque assistance.
Being able to independently control the speed of the motor
would have been ideal, however, all attempts to do so were
unsuccessful.

Nevertheless the bike is equipped with a feature called
walk mode which can operate the bicycle at a fixed velocity
of 6 kmh−1. It turned out to be possible to take advantage of
that feature and programically set the bike’s velocity to 6 kh,
with the downside of not being able to control the velocity
further.

B. Steering

A powerful DC motor of the type Maxon DCX 32 was
attached to the handlebar with a timing belt through a gearbox.
The gearbox is of the type Maxon GPX 32 and has a reduction
of 111:1. The resulting nominal torque to the handlebar was
11Nm, stall torque 203Nm and the nominal angular velocity
7.8 s−1.”
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An incremental encoder of type Maxon HEDS 5540 with
high resolution is used together with the steering motor to
measure the position of the handlebar relative to its calibrated
positon. The microcontroller of the type Beaglebone Black is
equipped with a quadrature decoder that is able to read the
shaft position without compromising overall performance of
the controller. The result is that the handlebar angle can be
measured at a resolution of 3500 ticks/rad.

The angular velocity of the steering is controlled by sending
a PWM signal from a real-time processor of type MSP430
Launchpad to a motor controller of type Jaguar MDLBDC24
which is connected to the motor. In order to communicate
with the Launchpad, characters are sent from the BeagleBone
through serial connection with each character corresponding
to a predefined PWM value. Since serial communication is
restricted to single characters, it was decided to use the entire
ASCII set (which consists of 63 characters) where each charac-
ter corresponds to a PWM value. As a result, there are a limited
number of angular velocities available to the controller. Tests
were then performed where the resulting angular velocity was
measured for each PWM value and the measurements used to
construct a linear function to convert desired angular velocities
to PWM values. The result is a discrete angular velocity
controller that can operate at velocities between −7.9m s−1

and 7.9m s−1 with a resolution of 4 steps/rad/s.
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Fig. 2. The handlebar angular acceleration was discritized with a resolution
of 4 steps/rad/s between −7.9m s−1 and 7.9m s−1. The red dots are
measured samples for different input angular velocities. This figure reveals
a problem of controlling the angular velocity when it’s close to zero.

C. Orientation estimation

The dynamics of a bicycle that are associated with stability
are dependant on the roll angle and roll angular velocity of
the bike. These states are estimated with the usage of an
IMU (Inertial Measurement Unit) of the type FXAS21002C.
IMUs are equipped with an accelerometer, gyroscope and a
magnetometer which can be used separately or fused together
in order to estimate orientation with respect to different
degrees of freedom. The angular velocity can reliably be
measured with the gyroscope since the gyroscope measures
acceleration changes very accurately. The absolute roll angle
is measured by passing measurements from the accelerometer
and the gyroscope through a AR(1) type complementary

filter. The AR(1) filter is used to balance between integrated
measurements from the gyroscope and absolute acceleration
measurements from the accelerometer. Using these measure-
ments separately without a complementary filter would lead to
a accumulated drift due to integration error in the case of the
gyroscope or noisy estimations in the case of the accelerometer
as acceleromters do not perform well when the gravitational
vector is changing rapidly.

III. MODELING

Bicycles are highly dynamic and non-holonomic systems
which makes the modeling and control more interesting to
model less redundant systems. With the aim of balancing and
steering, the bicycle is modelled considering the lateral forces
responsible.

Fig. 3. A side view of the bike, showing parameters used in the model. The
origin of the coordinate system is based at contact point where the rear wheel
touches the ground.

Fig. 4. Illustration of the angles used to describe the model. The left image
is the bike seen form above, and the right image is seen from behind. The
origin of the coordinate system is based at contact point where the rear wheel
touches the ground.

The model of the bicycle used is the Whipple bicycle model
[1] which describes the motion by use of four rigid bodies: a



3

rear wheel R, a rear frame B, a front frame H consisting of
the handlebar and fork assembly and a front wheel F [5]. The
assumptions made are as follows;

• Head angle λ is π/2 and trail is zero.
• The model is made up of four rigid bodies.
• The bodies are connected to each other by zero friction

joints.
• The bicycle is laterally symmetric, wheels have knife

edges and no longitudinal slip while rolling.
• The bicycle moves on flat ground.

A bicycle has a self-stabilizing property as described by
Åström [1]. However the motor mounted to the handlebar
restricts the free steering, which is required for this property,
and thus this property can be disregarded for this case.

A. Nonlinear Bicycle Model

A simple second order model (1) can be obtained from
balances of forces on the system equation, with steering
acceleration as control input.

J
d2φ

dt2
−mgh sinφ =

Dv0
b

dδ

dt
+
mv20hδ

b
(1)

The terms in the right hand side of the equation(1) are
torque generated while steering, due to inertial forces and the
centrifugal forces respectively, in the left hand side mgh sinφ
is the torque due to gravity.
where m is the total mass of the bicycle, v0 is the forward
velocity, g is the gravity constant, h and a are the vertical and
horizontal distances from the ground and the center of the rear
wheel to the center of mass respectively and b is the distance
between the rear and front wheel points of contact on ground.

Now, approximating moment of inertia and inertia product
as, J ≈ mh2 and D ≈ mah in (2), we get

φ̈ =
g

h
sinφ− av0

hb
δ̇ − v20

h2b
δ (2)

B. Second Order Linearized model

Linearizing this second order nonlinear model about some
small tilt angles φ, results in(3).

φ̈ =
g

h
φ− av0

hb
δ̇ − v20

h2b
δ (3)

The state vector used in order to describe the motions of the
bikes is x = [φ, δ, φ̇, δ̇]T . Where φ is the roll angle, δ is the
angle of the handlebar followed by their respective angular
velocities. The dynamics are then described as a state space
representation, with velocity v as a parameter.

ẋ =


0 0 1 0
0 0 0 1
g

h
−
v2

hb
0 −

av

hb
0 0 0 0

x+


0
0
0
1

u. (4)

C. Linear Fourth-Order Model

The simple second order model has static momentum
balance for front fork assembly and less information about
mass distribution. The more detailed model which describes
the mass distribution and geometry, is a fourth order model (5).

M

[
φ̈

δ̈

]
=

[
0
Tδ

]
− vC

[
φ̇

δ̇

]
− [gK0 + v2K2]

[
φ
δ

]
, (5)

where M is the symmetric mass matrix, C is the damping
matrix, K0,K2 is the stiffness matrix, Tδ is the input steering
torque,φ is the roll angle, δ is the angle of the handlebar, φ
is the roll angular velocity, δ is the angular velocity of the
handlebar.
This model can be used knowing the mass and inertia prop-
erties of the complete bicycle. The simple model is used here
to control stability and turning.

IV. CONTROLLER

The linearized model described by equation 3 represents the
nonlinear model (equation 2) quite well when the angles φ and
δ are small. However, the nonliearities are more significant
with respect to varying velocity which makes it unfeasible to
use a linear controller with varying velocity. Since the velocity
is a varying parameter but not a state which is affected by the
system, it was decided to control the system with an adaptive
LQR controller which gains vary with varying velocity.

A. LQR

The task is to control a bike with an LQR controller which
basically only is a state feedback. An observer is not needed
because all the states are observable. The advantage with LQR
is that it takes up less computational power, than PID for
example, because it is only a matrix multiplication by a gain
that has been pre-calculated by minimizing a cost function
with respect to the input, whilst a PID compute both derivative
and integral. The gain is calculated with the state matrices from
the linearized model. The weight matrix Q is chosen so that
the input and state outputs are kept within the limits.

The disadvantage with LQR is that it is less robust than
PID. The gain is calculated for a linearized model with fixed
parameters which make the controller valid for just that object.
This means that if this controller would be applied on a
different bike it would lose its efficiency and possibly fail
even if the bike is similar. With a PID controller, this method
of failure would be less likely. The biggest challenge is if the
system has a parameter which is changing with respect to time
then the gain of the LQR also needs to be a function of time.

The cost function which is supposed to be minimized with
respect to the input is

J =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (6)

where Q is the weight matrix which penalizes the states and R
is the input weight. The Q matrix has to penalize for steering
angle a lot because the angle is limited to ±30◦. The input is
angular acceleration for the handlebar and it is important to
limit that otherwise the motor takes damage.
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Fig. 5. Block diagram of the system with the implemented LQR feedback.
This controlled model does not take varying velocity into account. The
additive state derivative disturbance was used to test the controller when the
bike was exposed to a torque disturbance around the axis of φ.

Q =


1 0 0 0
0 100 0 0
0 0 10 0
0 0 0 10

 , R = 1 (7)

The gain is then found by using lqrd(A,B,Q,R,Ts)
which is function that gives you a discrete controller from
a continuous system where Ts is sampling time.

The velocity will mostly stay at a fixed speed, but variations
can occur in a rough terrain and it will take a while to reach
the desired speed from initially standing still. Having the
velocity as a state will add unnecessary difficulties which will
complicate the linearization. The easiest way to have a varying
velocity is to keep it as a parameter but have a change gain
depending on velocity K(v).

Fig. 6. The LQR gain described for the four states as a function of velocity
from v = 0 m/s to v = 3 m/s.

The system has one set point reference and four states
which gives a K with size 1x4. To find the adaptive gain the
relationship between velocity and each one of the four scalars
in K must be found and that is calculated by evaluating K
for a range of different velocities. The relation is found by
using the curve fitting tool box in MatLab which takes a set
of data and fits a given type of function to the set. The type is
given by the user ex. polynomial, power and sum of sines. It
was found that the gain acting on the angles (K(1) and K(3))
varies with respect to the function a/(vb) + c and entries 3
and 4 varies according to a third degree polynomial.The gain
K(v) is shown in figure 6.

K(v) =
a

xb
+ c (8)

B. Algebraic relationships between state references.

When the bicycle heads straight forward the reference roll
angle should be 0 in order for the bike to remain stable
since the gravitational vector will be pointing downwards with
respect to the bike. This is however not the case when the
bicycle enters a turn since it will be exposed to a centripetal
acceleration. In order for the bike to remain stable, the net
acceleration acting perpendicular to the side of the bike should
converge to zero. In order for this to hold, the relationship
between the reference handlebar angle and the reference roll
angle should be,

tan(φref ) =
v2

gl
tan(δref ) (9)

This conversion was added to the system modelled in Simulink
and can be seen in figure 5. By setting a state reference to
the handlebar angular acceleration, it is possible to steer the
bicycle along a turn.

V. SIMULATION RESULTS

The implemented LQR was then tested by adding an input
to steering angle reference to 22.5◦ from standing still with the
velocity set to v = 1.6 m/s. The response from the simulation
is shown in figure 7. The rise time of the system is 0.88 s.

A. Robustness

To check the robustness of the controller simulations of the
nonlinear system is executed with some errors of the param-
eters. The parameters which could affect the performance of
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Fig. 7. Handlebar Angle reference is 22.5◦, with the center of mass of both
the controller and model set to (x, z) = (0.27, 0.53) m.

the controller on the actual bike were then changed for the
dynamics model whilst still using the developed controller.
Center of mass was then altered by changing the the parame-
ters a and h. Then the same test as specified previous in the
section for these different scenarios, the results simulations
are shown below in figures V-A to figure 11. This is done to
verify that the controller works even if the bike parameters
differ from the simulated model.

To further analyze this firstly tests were made by indepen-
dently varying the a parameter, which is the position of the
center of mass on the x-axis. Initially This change was done
to the system dynamics whilst keeping the controller for the
initial parameters. It was found that a rise time of tr = 1.31 s
was still achieved for a bike which has the parameter a = 0.32
m whilst the controller was made with the parameter a = 0.27,
as shown in figure V-A. Further increasing this parameter
increases the rise time above tr > 1.5 s. For a = 0.34 the
rise time increases to tr = 2.22 s.

Fig. 8. Handlebar angle reference is 22.5◦. The center of mass of the
model is (x, z) = (0.32, 0.53) m and for the controller it is set to
(x, z) = (0.27, 0.53) m.

Similar tests were done with varying the h parameter.
Increasing the parameter would in reality reflect an inverted
pendulum with increased length. This results in a slower
system and although the height is drastically increased the
rise time is still kept below 1.5 s. Decreasing the height of
the center of math is however a more crucial scenario. Setting
h = 0.43 results in a rise time of tr = 1.47 s, which is still
acceptable with keeping tr < 1.5 s.

Fig. 9. Handlebar angle reference is 22.5◦. The center of mass of the
model is (x, z) = (0.42, 0.53) m and for the controller it is set to
(x, z) = (0.27, 0.53) m.

Fig. 10. Handlebar angle reference is 22.5◦. The center of mass of the
model is (x, z) = (0.27, 0.43) m and for the controller it is set to (x, z) =
(0.27, 0.53) m.

Fig. 11. Handlebar angle reference is 22.5◦. The center of mass of the
model is (x, z) = (0.27, 0.33) m and for the controller it is set to (x, z) =
(0.27, 0.53) m.

VI. CONCLUSION

A model was derived describing local orientation of the
bike with respect to the roll angle φ and steering angle δ.
Simulations indicate that the controller can control the front
wheel in such manner that it is possible to keep the bike stable
for varying velocities between 0m s−1 and 3m s−1. This was
not successfully tested on the an actual bicycle.

The controller was designed for a bicycle with a fixed
height and length. Simulations show a rise time of 0.88 s. The
controller also works for a similar bike where the center of
mass can vary with ±5 cm whilst maintaining a rise time of
less than 1.5 s.
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